
(NASA-CR-380493) COEIEENTS Ch EVEhS D B I V E N
f h 1 E A ' I I C L /NASA) 36 F A v a i l : h l l S BC
P 0 3 / B E A01 C S C L 09B

N87-26566

Unclas
G3/b 1 00857; 1

Research Institute for Advanced Computer Science

Comments on Event
Driven Animation

Julian E Gomer

May 27, 1987

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 87.16

TABLE OF CONTENTS

Page

i

1 . Introduction ..
2 . Design points for an animation system

2.1. Interactive ..
2.2. Speed ...
2.3. Flexibility ...
2.4. Extensibility ...
2.5. Usability ..
2.6. Habitability ...
2.7. Overall ...

3 . Event Driven Animation ...
3.1. The Display Function ..
3.2. Definitions ..
3.3. Interpolation ..
3.4 . Generality ..

4 . twixt ..
4.1. Input Methods ...
4.2. Layering ...
4.3. Objects ...
4.4. Track Implementation ...

4.4.1. Basic geometrical transform tracks
4.4.2. Hierarchy control tracks

4.4.4. Notes track ...
4.5. Track Manipulation ...
4.6. Record Structures ..

4.6.1. Events ...
4.6.2. Tracks ...
4.6.3. Twerpers ...
4.6.4. Comments ..

5 . Epilogue ..

4.4.3. Surface geometry track

2
3
3
4
5
6
7
8
9

9
10
11
12
14
15
15
16
17
19
19
20
23
24
24
26
26
28
28
29
30

6 . References ... 32

TR-87.16 - 1 - May 27, 1987

Comments on Event Driven Animation

Julian E Gomez

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 87.16
May 27, 1987

Event driven animation provides a general method of describing controlling values for
various computer animation techniqoes. This report provides a definition and com-
ments on generalizing motion descriptions with events. It also provides additional
comments about the implementation of twizt.

Work reported herein was supported in part by Cooperative Agreement NCC 2-387
between the National Aeronautics and Space Administration (NASA)

and the Universities Space Research Association (USRA).

TR-87.16 - 2 -

Comments on Event Driven Animation

Julian E Gomez

Research Institute for Advanced Computer Science

May 27, 1987

May 27, 1987

1. Introduction

The most important design goal for an animation system is to not constrain

the animator’s imagination. The most serious problem with any animation

system is the mass of detail required to produce animation.

We don’t want a system to force a paradigm on the animator. In particular,

it can’t require physical laws, although it must be able to supply them when

needed. A brief review of classical animation shows this point: although Wily

Coyote falls in a fashion that may be related to d =1 /2a t2 , it usually does

not happen until he has been walking on air for a few seconds (the “Cartoon

Laws of Motion”).

No matter what method is used to describe motion, there is a large amount

of data that needs to be specified. A system that provides only one type of

movement will not provide the needed flexibility. As Wilhelms [23] points

out, with a kinematics description the animator must experiment until the

TR-87.16 - 3 - . . May 27, 1987

motion looks right, and with a dynamics description the animator must

experiment until the desired motion comes out.

The mathematics for computer animation and the techniques for building

graphics software have been well explored. Higher level descriptions of ani-

mation will be the research area in the future. The last two decades have

demonstrated that computer graphics can display animations with adequate

form; now it’s time to put some effort into constructing animations with con-

tent. Recent computer animations [2, 6,11, 21, 221 show a definite move in

this direction. This trend towards character animation will tax the capabili-

ties of computer animation systems but produce more interesting animation.

2. Design points for an animation system

A topic related to the design parameters for an animation system is

classification of animation systems, a subject treated by Zeltzer [25] and

Gomez [9]. Both of these schemes rely on the motion specification mechan-

ism for categorization. Qualifiers are also employed to describe practical

aspects of the system, such as playback.

2.1. Interactive

An animation system should be interactive. It’s hard to design pictures

without looking at a picture of what’s being designed and being able to

change the picture and see directly what happens.

TR-87.16 - 4 - May 27, 1987

2.2. Speed

An ideal animation system would draw fancy color pictures in real time.

Since this is impractical for the time being, the question becomes one of

how much playback can be provided quickly. An acceptable answer is

that as soon as the animator has finished adjusting something in the

script, he can push a button and have the animation play back in real

time. A few seconds delay for precalculation is acceptable; non real-time

playback, however, is not. Whereas an animator can find something else

to think about for the ten seconds or one minute of precalculation, it’s

difficult to appreciate motion when it is proceeding at the wrong rate.

This is the way things used to be; cel animators wouldn’t see any motion

until perhaps the next day. In this day and age that’s not a valid reason;

a valid reason would be something like “this motion needs two minutes of

Cray time to evaluate.”

The problem is magnified on a multiprogramming system, where in addi-

tion to playing the animation at the wrong rate, the system will swap the

animation system in and out of the execution queue, causing jerks in the

animation.

We will call an animation system that provides acceptable playback an

online system and designate it as being nice. With current technology, an

online system will most likely provide a wireframe display.

TR-87.16 - 5 - May 21, 1987

2.5. Flexibility

The system shouldn’t force the animator to use mechanisms she may not

want to use. Sometimes an animator may want a linear spline, even with

its attendant lack of continuity in the derivatives. As mentioned in the

introduction, sometimes physics may be wanted and sometimes not. The

point about flexibility is that the system should not force any motion

mechanisms on the animator.

The subjects of splining and splines for computer animation have been

discussed adequately in the literature, so these notes won’t mention them

other than in the description of the twizt implementation later.

A useful idea from the 8cn - assmblr system [4] is the ability to substitute

module names while interacting with the system. This loose coupling

makes it easy for the animator to switch data resolution, change lighting

algorithm, change anti-aliasing algorithm, change screen resolution, etc.

Given this capability for changing parameters at whim and (relatively)

immediately obtaining the new result, the animator is given extra ranges

of expressive power. When it’s trivial to change the way a picture is com-

puted, the user will try those different ways, resulting in effects that may

otherwise not have been attempted.

TR-87.16 - 6 - May 27, 1987

2.4. Extensibility

The basic reason for extensibility is that no matter what facilities the sys-

tem provides, a need will arise for something else. This is especially true

in a research and commercial production environments. Thus the system

should include facilities for reconfiguring existing mechanisms or including

new ones; it should be extensible.

An example of this can be found in the emacs editor. It provides a wealth

of text operation functions, and the user can write subroutines using these

operations to extend the power of the editor. A simple example would be

a subroutine that transposes two lines; a more complex one would be an

interactive e-mail handling repertoire. Once the user has written or bor-

rowed such a routine, it is as easy to use as a built in emacs command, in

addition to having the same interface. The point is that the user has the

capability of modifying the system to his own desires without rewriting

the program.

One way of using this extensibility is to have objects that carry their own

behavior with them [13]. Humans, for example, can bend their elbows

only so far. It would be nice to include this fact in the “human” abstrac-

tion. However, it would also be nice to be able to define a new type, say

“human?,” that has different or no restrictions on elbow movement.

This notion of dynamic use of the system means the animator can define

his own movement criteria and use them in the animation system. This in

TR-87.16 - 7 - May 27,1987

turn means the animator is effectively reconfiguring the system to his own

needs for that animation.

In this context, object oriented programming is a generalization of exten-

sibility. The advantages of object oriented programming extend them-

selves to any structured system, including one where the constituents are

actors and motions rather than lines of source code.

Dynamic components require a rather sophisticated operating system. In

particular, a program must be able to load code segments dynamically.

Only LISP or Cedar [18] have this notion built into their design. Some

efforts have been made towards bringing this attractive capability to

UNIX, e.g. GEM [14].

2.5. Usability

The system should not be a keyframe system. Originally, a keyframe sys-

tem was one which used key frames to control motion. It was designed to

facilitate the way hand animation is built [20]. The key frames would be

drawn by the animator and the system would interpolate between them.

A number of such systems have been implemented [l, 31.

Recently, “keyframe” has been used in a more general sense to mean a

system that interpolates between values, whether or not there actually are

key frames. These are what Zeltzer calls guiding systems [25], indicating

that the animator must explicitly describe the animation to be performed.

May 27, 1987 TR-87.16 - 8 -

The system will provide splines to smooth out the animator’s input.

The use of the terms guiding and keg parameter is strongly preferred over

keyftame, since the latter term implies there are key frames, in contrast to

the first two, which do not. Since contemporary animation systems gen-

erally do not work with key frames, this accuracy is desirable.

Finally, the system shouldn’t be an extension of a programming language.

This forces the animator into a paradigm which has nothing to do with

images. It’s not necessary (neither is it prohibited) for an animator to

know that a for loop is necessary to transform the vertices in a database,

or that cosn is often used in illumination calculations. Furthermore,

there is a strong possibility that the detail of dealing with a programming

language will distract the animator from the animation.

2.6. Habitability

There are a number of other necessary features in an animation system

contributing to its habitability, or how nice it is to work in the system.

Examples are guarded exit (do not exit unless the script is saved or the

user is sure); interactive exception handling (e.g. “File exists - do you

want to overwrite it?”); help facilities. Defanti defined many habitability

and extensibility requirements in GRASS [5].

TR-87.16 - 9 - May 27, 1987

2.7. Overall

A point not previously mentioned is that it may require more than one

system to perform all these functions, with some sort of hierarchical

arrangement between them [25]. This approach would provide different

levels of complexity and the corresponding different levels of addressable

detail.

3. Event Driven Animation

Event driven animation is an abstraction for describing animation. Rather

than describing a specific animation technique, it describes a methodology for

describing animation. It is not constrained to describing motion, but it is

useful for constructing all aspects of an animation. It can be generalized to

any level, thereby providing appropriate degrees of abstraction. A small

scale event driven animation system can be implemented easily.

A fundamental concept when dealing with event driven animation is the idea

that animation is not limited to moving things around; but also moving the

color or the shape or the rate of change of the animation variables. The con-

cept of event driven animation unifies all the different aspects of making an

animation. The idea is that all display functions can be treated the same so

that operations can be performed on any display function as easily as on any

other, freeing the animator from having to use method m l to deal with

display function F, and method m2 to deal with display function F,. For

TR-8 7.16 - 10 - May 27, 1987

example, it’s not acceptable for the animator to have to use key joint angles

for arm motion and have to use inverse kinematics for leg motion.

Another way of putting this is that animation is not just getting from point

A to point B using points C and D to help control a cubic spline; it’s dealing

with every aspect of making a picture and making the picture move. Thus

the mechanisms for performing operations on anything should be similar.

This point can be qualified to a degree. It doesn’t make sense to apply vector

operations to a scalar value. However, the system should recognize the prob-

lem and deal with it, perhaps translating the request to something reason-

able. Or the animator could have the options of configuring the system to

attempt a translation, ignore the problem, or complain and ask for instruc-

t ions.

3.1. The Display Function

Consider some arbitrary display function: given some input parameters

telling it how to operate, it will take data, process it, and output new

values contributing to the picture. Common display functions include the

basic geometric transforms such as translation, orientation, and scaling.

Other display functions include color, transparency, surface geometry,

whether or not to display, joint angles, etc.

It’s readily apparent that the datatype required depends on the display

function: color is a 3-vector, transparency is usually a scalar, orientation

TR-87.16 - 11 - May 27, 1987

is a 3x3 matrix, surface geometry is a dataset, whether or not to be

displayed is a Boolean value, and a methodology for calculating a value is

a procedure pointer. When one of these is used to control a display func-

tion, we will call it a control value.

Mentally we can translate any datatype into a vector of appropriate

scalar values. Thus a matrix becomes a 9-vector of real numbers, a

dataset becomes a matrix of 3-vectors which is in turn a 3xn vector, a

display flag becomes a 1-vector of Boolean values, and a procedure pointer

is a pointer valued 1-vector. This point is academic, however, and is men-

tioned only for formality.

3.2. Definitions

The animation process requires specification of values for every frame of

time for every display function implemented in the graphics system. For

an arbitrary display function F we have a set of control values for it, 8i.

To each of these control value vectors we attach the time at which it is to

be used; this construction of the control value and the time we call an

event. The list of events describing the activity of F over the animation

we call a track. The track is implicitly sorted in ascending order by event

time; sorting should be implemented by the underlying software so the

user doesn’t have to do it.

TR-87.16 - 12 - May 27, 1987

Practically, it makes more sense to store events only when an input value

for F changes, and use a splining technique to generate the inbetween

values. Thus interpolation information must also be stored in the event:

acceleration/deceleration information, splining method, etc . This will be

discus'sed momentarily.

To access values within tracks, we can define an abstract function

E (objects ,f ,t)

where objects indicates a class of objects, f is the display function, and t is

the time. E will return a value appropriate for that display function. The

animation controller will have to evaluate the appropriate tracks to calcu-

late that return value vector. The number of events necessary to do this

will depend on the display function and the complexity of the splining

method, e.g. a cubic spline requires four events to work with; a Boolean

function requires only the closest preceding event.

Timing in an animation can be changed by changing the frame numbers

in events. Track segments can be moved to change the time at which their

animation occurs. Track segments can also be multiplied by a factor to

expand or compress their length.

3.3. Interpolation

We begin to see a relation between events and curve generation. In fact,

the values contained in the events are control points, the frame number is

TR-87.16 - 13 - May 27, 1987

the parameter of interpolation, and the animation for that display func-

tion is the result of the generated spline. Here the term control values is

better then control points, to emphasize the fact that event values have

arbitrary types, including some which cannot be splined.

There are a plethora of techniques for interpolating or approximating

curves. Track animation relies on patched curves. Briefly, patching refers

to the process of “gluing” together splined curves end to end, or surface

elements side to side. Continuity in the derivatives across the boundaries,

although desirable, is not required. Different interpolation functions can

be used to achieve different patches, although the animator can certainly

specify a single splining function for the entire duration of the track.

We must assume a track is at least piecewise continuous; otherwise F will

be undefined at certain frames, a potential source of serious problems. We

would also like the first derivative with respect to time, d F/dt , or F

(velocity) to be continuous; this will prevent sudden jumps in the output

values from F. If the second derivative d 2 F / d t 2 , or F (acceleration) is

also continuous, this will prevent sudden jumps in the rate of change of

the input values to F. If both constraints are met then the output of F

will be smooth and will change smoothly. See also Smith [17].

In order t o calculate a frame in an animation, all tracks are evaluated for

the given time. The collection of activity on all tracks inherently gen-

erates the animation.

TR-87.16 - 14 - May 27,1987

Note that a change in interpolation functions is a change in value, and

events can exist just for this purpose. Changes in velocity are also events,

;.e. specifying values for d F/dt instead of F itself.

Keep in mind that interpolation schemes apply to any track, not just posi-

tion. There is no reason why B-splines can’t be used on color or tran-

sparency information; for continuity purposes, it’s better if they are.

3.4. Generality

The level of abstraction for any track is tied to the intelligence of its

twerper (interpolator). Position is trivial, rotation matrices are harder,

surface geometries are even harder, object collision detection is yet harder,

etc. The sophistication of the twerper is generally based on the amount of

support code available and how much dynamism the operating system can

provide.

One way of viewing different levels of tracks is to think of the higher levels

compiling down to the lower levels. Just as a high level language is com-

piled down to a low level language, an abstract track can be compiled

down to simpler ones. This allows the animator to deal with varying lev-

els of abstraction, or with animation systems at different levels in Zeltzer’s

hierarchy. The unifying element among different tracks with different

complexities is that the animator has provided certain values at certain

points in time to control their behaviors.

TR-87-16

Earlier it wa mentioned that

- 15 - May 27, 1987

control value could be a pointer to a pro-

cedure that controls the display function. This procedure would be

invoked whenever the animation controller determines that it should be

contributing to the calculation of the animation. This is somewhat analo-

gous to “buttons” in Cedar [18, 191, which are modules invoked when a

user clicks a button on the screen. In Cedar, part of the process of instal-

ling a new button on screen is to tell the window manager what procedure

to invoke when the user clicks that button. In the same way, construction

of these inquisitioe events lets the track manager know what procedure to

use when evaluation of a track is necessary. This facility is the most

powerful aspect of event driven animation, as it allows dynamic control of

the animation, where display function controllers can use the current

values of other tracks in determining their own values, and thus respond

to environmental parameters.

4. twixt

twizt is integrated into the OSU image generation pipeline [24]. This gives

the animator a unified environment for dealing with animation and image

production.

4.1. Input Methods

As described previously [7], there are a number of ways to describe values

to twizt. The fancier the display device the user is working, the better

TR-87.16 - 16 - May 27,1987

these input methods are. Where the input device provides only a limited

number of inputs (i. e. a bank of control dials), twizt provides ways of

dynamically changing the assignment of each input device to a control

mechanism.

4.2. Layering

The approach to designing animation in twizt is layering, where the ani-

mation is built up in layers of motion. Analogies can be drawn to cel ani-

mation, where a frame is built up of a number of cels lying on top of each

other. In twizt, however, the layers are not pieces of picture, but pieces of

mot ion.

An animator may labor for some time on one particular part of the ani-

mation, say the arm of a baseball pitcher throwing a ball. Then he may

switch to the ball and work on that. This might be interspersed with

quick returns to the arm to perfect some aspect of its motion. It might

also be interspersed with work on the snap of the pitcher’s head. No com-

mands are required to switch context; the animator is carrying the con-

text in his mind, and the naming scheme in twizt allows different ways of

specifying the context of an action.

The intent of this approach is that it allows the animator to concentrate

on one theme for some time, until he is ready to concentrate on another.

It also allows the animator to instantly return to any previous activity in

TR-87.16 - 17- May 27, 1987

order to modify it. This allows quick implementation of flashes, where the

animator remembers or thinks of something that should be done to a

sequence already worked on.

4.3. Objects

twizt supports the common practice of constructing object hierarchies, i. e.

of inserting subtrees into trees to express hierarchical relationships. Thus

a scene is actually made of a forest[lO] of trees. However, the relation-

ships that can be expressed between nodes cover a broader range than

that usually available, including operations that cannot be expressed as

matrix products. A later section will elaborate.

One nice feature in twizt is the way the animator can rapidly switch data-

bases. A pragmatic perusal of animation environments shows that few

animations are designed with graphics hardware that can display

thousands of vectors in real time. In fact, animators are often working at

a station that can handle a few vectors in real time. twizt allows the ani-

mators to dynamically switch the database used to draw an object. Thus

the animator can have rapidly drawn frames of low complexity or slowly

drawn frames of high complexity, just by replacing the surface geometry

definition of an object. All parameters of an object not related to its

geometry are unaltered by this replacement.

TR-87.16 - 18 - May 27, 1987

On fast graphics hardware this becomes less of a constraint. It will

decrease in importance in the near future (see final section of notes).

Objects are named as described in Gomez [7, 81. Two important points

not mentioned in the paper are regular expressions and aliases. Names can

contain regular expression characters like the Unix shell and esh; these

characters are handled just as they would be in either of shell. The user

can also define alias names, indicating that whenever twixt sees that

name, it is to be expanded to all the objects named in the list for that

alias. List elements may of course be regular expressions. Furthermore, it

is not an error to include an undefined object in an alias list. twixt

assumes that the animator will bring in that object later, when he is

ready for it.

TR-87.16 - 19 - May 27, 1987

4.4. Track Implement ation

twizt implements the following tracks:

position & d$ / d t
rotation & G / d t
scale & & / d t
attach position & d b / d t
color & d t / d t
shininess & dShininess l d t
transparency & d Transgarcncy / d t
surface geometry
display enable flag
attachment
notes

4.4.1. Basic geometrical transform tracks

Many of these tracks are straightforward: position, scale, color, illumi-

nation parameters. Rotation can be treated either as angles around

the object’s axes or as 3x3 orientation matrices. The former case is

easy to implement but non-intuitive, meaning that after a few rota-

tions, it’s hard for the animator to make a direct connection between

instructing the system to do a rotation and what happens on the

screen. This is because the object’s axes are themselves transformed,

meaning that the rotation is not being applied to the original axes set

but the transformed set. In the latter case, matrix interpolation was

implemented using a scheme based on a question from my general

examinations. This technique has been formalized as quaternion rota-

tions [15, IS].

TR-87.16 - 20 - May 27, 1987

In addition, there are velocity tracks running alongside each primary

track that has a defined derivative (e.g. the position track has a

derivative but the display enable flag does not). The animator may

address any track directly, or its derivative, or both. In the latter

case, the velocity track has priority in any conflicts.

As an example, consider an animator who specifies that an object’s X

position is to be 0 at frame 1 and 20 at frame 24, then specifies that

the X velocity is to be 10 units per second. This situation is irreconcil-

able. The decision to give the velocity track precedence increases the

likelihood that the display function will be continuous in its deriva-

tives.

4.4.2. Hierarchy control tracks

The attach position is where a child object is attached to its parent, in

terms of the parent’s coordinate space. There are various ways of

inserting a subtree into a tree:

hang

In this mode, only the offspring’s position is transformed by the

parent’s matrix; the remainder of the matrix is calculated from

the child’s current display parameters. The parent’s scale vector

does not propagate down (see attach below). This mode is

intended for an object that is hanging on another object, such as

TR-87.16 - 21 - May 27, 1901

a rod hanging on a pivot pin. As the pivot pin moves around, the

rod must go with it, but it should pivot automatically so it

remains in the same orientation.

Implementation is not difficult. To construct the offspring’s

matrix, first transform it’s final position by its parent’s matrix

and place the result in the bottom row of the matrix. The upper

left 3x3 is calculated as usual, with no reference to the parent

matrix.

attach

This mode was defined by s c n - assmblr: parent scale values do not

propagate down. It’s useful for attaching light sources to other

objects, since in the OSU paradigm the scale value of a light

source determines its range.

couple

This is a conventional tree builder, where all elements of the

parent’s matrix propagate to the offspring nodes. This method

allows a limited squash-and-stretch capability.

In actual implementation, twixt constructs matrices in a bottom to top

fashion. In order to build a frame, each object’s matrix must be con-

structed. To do this, twidgoes through its list of objects (which

corresponds to visiting each leaf in the forest) and finds which of them

TR-87.16 - 22 - May 27, 1987

has their newmatriz flag set, indicating that some display parameter

has changed, necessitating recalculation of the matrix. It then travels

recursively up the hierarchy tree until it reaches the root of that object

subtree, at which point it unwinds, constructing each object’s matrix

on the way down $that newmatriz flag is set and concatenating as

appropriate. No matrix is ever computed twice; the newmatris flag is

unset to keep that from happening. Thus each node in the tree may

be visited more than once, but it won’t cause extraneous matrix arith-

metic.

There are two ways of removing a subtree from a tree:

detach

Detaches a subtree. The child object (and its children) will no

longer be controlled by the parent.

letgo

Detaches a subtree, but maintains the current transformation as a

pretransformation for future animation. This is used for objects

which are related to another object for part of the animation,

then detached to continue own their own way.

An example would be a hand throwing a ball. Initially, the ball

would be attached to the hand during the windup. When the ball

is released, it is “let-go,” so from that point on in time, the hand

TR-87.16 - 23 - May 27, 1987

will have no control over the ball. However, the point at which

the ball was let go determines its freeflight, so the transformation

at that instant must contribute to the animation following that

instant .

The attachment track controls the characteristics of the hierarchy con-

struction. The attach position track is simply a vector showing the

attach position. An attachment event simply contains a flag word

showing what kind of attach (or detach) is to be performed at what

time. If the event is one of the attaches (as opposed to one of the

detaches) it also contains a pointer to the new parent.

4.4.3. Surface geometry track

This track controls the surface geometry of an object. Object shapes

are interpolated (with flexibilities previously described) between some

number of defined geometries. Thus, a blended object has no shape it

can call it’s own; it is defined only when the animation is running.

The animator can freeze playback, or play back a single frame, in

order to take a look at the current surface geometry. Again, to save

memory, the event value field becomes a pointer to another structure

that actually defines the characteristics of the actual geometry and

contains the data itself.

TR-87.16 - 24 - May 27, 1987

4.4.4. Notes track

Note events are just that - notes. Animators usually write down all

kinds of information on their exposure sheets. Note events are the

animator’s notes to themselves. When the animation gets to the

frame a note event belongs to, the note is printed (the animator can

set a flag to enable or disable note printing).

4.5. Track Manipulation

Geometric transformations can be applied to track segments just as they

are to objects. Tracks can be scaled, translated, or rotated. These opera-

tions are different from changing the frame numbers in events; the former

change the values in the events, the latter change the times at which the

events occur. Thus the former change the control values themselves; the

latter change the timing of the animation.

These track-wise operations are implemented in a simple matter: the ani-

mator specifies the track segment by frame numbers, the operation, and

the operand. Rotation must be performed on vector or orientation matrix

tracks; it does not make sense otherwise.

A track segment copier is provided. This together with the track

transformer give the animator instancing capability for a track. Just as

geometric primitives can be defined and transformed to build more com-

plex objects, tracks can be defined and transformed to eliminate some of

TR-87.16 - 25 - May 27,1987

the drudge work of animation.

As an example, consider a ball bouncing along a mirror. First the anima-

tor animates one bounce of the ball. Then he copies it two or three times,

each one shifted by the appropriate time (perhaps two seconds) and the

appropriate dislocation. This is the original ball animation. Then the ani-

mator makes a second instance of the ball, copies the first one’s position

track to the second, and multiplies the second ball’s Y position track by

-1. This is the reflection’s animation, and the animator is done. Figure 1

shows value U8. time plots for this animation.

For a slightly more complex example, suppose the animation was four

balls and their reflections bouncing away at right angles from a central

Xsource, Xreflection

‘’~~~~11,,,,,1, Yreflect ion

Figure 1.
Plots of ball and reflection positions
(2 is not important for this example)

TR-87.16 - 26 - May 27,1987

point. As before, the animator would animation one ball and its

reflection (actually, since this is already done, it’s only necessary to read it

in from the system). Then this duet would be copied and the copy rotated

90 degrees about the central point. This copy-rotate action is performed

twice more, for a total of four balls and their reflections bouncing.

4.6. Record Structures

Following are record structures showing how various entities are imple-

mented. The ‘a’ character indicates a pointer.

4.6.1. Events

Event structure

Event Types
value

Natural frame
I Natural I easeIn I

Figure 2.

Event record structure

The vaIue field has no type, because it will depend on what the event

is being used for. If this structure were being implemented in PAS-

CAL, the event type field would serve as the CASE selector for a vari-

ant record.

TR-87-16 - 21 - May 27, 1987

Whether or not the event is a velocity event can be built into the

event type field or separated into its own field as is shown here. The

form shown here has some runtime advantages, e.g. if some piece of

code needs to do something to a color event, whether it’s a value or a

velocity value, it can work similar to this:

if (event.type is Color)
Doit ()

instead of like this:

if ((event.type is Color) or (event.type is ColorVelocity))
Doit ()

Technically, an event structure would be able to handle any kind of

display parameter the user desired. Unfortunately, most compilers will

simply allocate enough space for the worst case. In the case of a sur-

face geometry definition, it would require a lot of memory. In a global

context, most of the memory used would be wasted, since most events

are much shorter than surface geometry definitions. Therefore it makes

sense to use pointers for events that could take up a lot of memory.

TR-8 7.16

4.6.2. Tracks

- 28 - May 27, 1987

I I Twerper I WglobalDTwerper 1
Figure 3.

Track record structure

The event pointers are head pointers, i.e. they point to the heads of

their respective lists. If a global splining function pointer is non-

NULL, then the indicated function should always be used for interpo-

lating that track; otherwise use the patched method as described previ-

ously.

An alternative form would be to have a logical flag indicating whether

or not to use the global splining function. It’s a matter of taste; either

way should generate the same number of instructions if the NULL

pointer is zero, as it is in C.

4.6.3. Twerpers

Twerper structure

String =name

Figure 4.

Interpolating function record structure

TR-87.16 May 27, 1987 - 29 -

The name is used for display purposes, i.e. for telling the user what the

name of the function is. It will point to something like “cubic B-

spline” or “combination move,” etc. The other field points to the code

implementing that function. It will return whatever’s appropriate,

typically a floating point blending factor.

4.6.4. Comments

The structures shown here are not the actual declarations used in the

program, although they do indicate the informat ion content required.

Other fields may be useful for practical purposes. Forward and back-

ward pointers are a help, as doubly linked list traversal is fast. Addi-

tional pointers to reduce cross list traversal or avoid indirected lookup

also save time. Theoretically, they’re not necessary, but faster is

better .

Obviously there’s more to writing an animation system than what’s

discussed here. These concepts, however, form the basis around which

t w i d is written. There is a lot more that could be described, but that

would be outside the scope of these particular notes. Some additional

references along these lines are my dissertation [9] and the user manual

PI -

TR-87.16 - 30 - May 27, 1987

5., Epilogue

An extension to the idea of modifying tracks is to transform them with modi-

fying functions, L e . to filter the display function through time. This would

be one way of providing character. After designing a walk cycle, the anima-

tor would apply a modifier to provide a particular kind of walk, e.g. a limp.

There are analogies between this and the NYIT motion postprocessors and

Perlin’s pixel stream editor [12].

Current developments in fast 3-D raster display systems will not have as

much of an impact as advanced user capabilities, because fast hardware is

not the hard problem in computer animation. Animators generally desire to

see frames of high complexity in full color with advanced surface modeling

techniques (note that this is different from actual contemporary situations);

advanced 3-D systems generally work only with polygons and simple illumi-

nation calculations. The bandwidth required for complex 3-D imagery far

exceeds the capability of any current or planned hardware system. Thus the

major advances in computer animation will come not from better display

units, but from more advanced capabilities available to the animator.

Building an animation system is a nontrivial task. Doing it requires imple-

mentations of techniques from all aspects of computer science. It’s better to

view an animation system as a tool, since its function is to be used, rather

than to be an end in itself. Much of the system’s success will come from it’s

users’ imagination. But it has to provide them with the appropriate levels of

TR-87.16 - 31 - May 27, 1901

abstraction and the appropriate hierarchy of complexities, where “appropri-

ate” is the nebulous quantity indicating it’s not overbearing in normal use

but smart enough to help get the job done.

Developers and animators must remain in constant contact over the lifetime

of an animation system; otherwise the it will end up being skewed towards

the group that built it. The design and development of an animation system

should be seen as a symbiotic task between the “technical” types and the

“artist ” types.

TR-87.16

6. References

- 32 - May 27, 1987

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Baecker, Ronald M, “Picture-driven animation,” in Interactive Computer
Graphics, ed. Herbert Freeman,IEEE Computer Society(1980). Origi-
nally published in Conference Proceedings, Spring Joint Computer
Conference, AFIPS, 1969

Bergeron, Daniel and et, al, Tony di Peltrie,.ie !“Animation.”” Anima-
tion. 1985.

Catmull, Edwin, “The Problems of Computer-Assisted Animation,”
Computer Graphics 12(3) (August 1978).

Crow, Franklin C, “A More Flexible Image Generation Environment,”
Computer Graphics 16(3) pp. 9-18 SIGGRAPH-ACM, (July 1982).

DeFanti, Thomas A, “The Graphics Symbiosis System - An Interactive
Minicomputer Graphics Language Designed for Habitability and Exten-
sibility,” Ph. D. Dissertation, The Ohio State University (March 1973).

Donkin, John, Trash, Ohio State University CGRG (1984). Animation.
Gomez, Julian E, ‘‘Twixt: A 3D Animation System,” Computers and
Graphics 9(9) pp. 291-298 Pergamon Press Ltd., (1985). Reprinted from
Proceedings of Eurographics ’84.

Gomez, Julian E, twizt user manual, Computer Graphics Research
Group, The Ohio State University (1985).

Gomez, Julian E, Computer Display of Time Variant Functions, The
Ohio State University (1985). Ph.D. dissertation
Knuth, Donald E., The Art of Computer Programming Volume 2: Sem-
inumerical Algorithms, Addison-Wesley Publishing Co., Reading,
Mass. (1969).

Lasseter, John, Luzo, Jr., Pixar, Inc. (1986). Animation.
Perlin, Ken, “An Image Synthesizer,” Computer Graphics lQ(3) (July
1985).

Reynolds, Craig W, “Computer Animation with Scripts and Actors,”
Computer Graphics 16(3) pp. 289-296 SIGGRAPH-ACM, (July 1982).

Schlag, John F., “Eliminating the Dichotomy Between Scripting and
Interaction,” in Proe. Graphics Interface ’86, (May 1986).

Shoemake, Ken, “Animating Rotation with Quaternion Curves,” Com-
puter Graphics 19(3)(July 1985).

Shoemake, Ken, “Quaternion Calculus and Fast Animation,” in Tutorial
Notes: Computer Animation: 3- D Motion Specification and Control,
ACM SIGGRAPH(Ju1y 1987).

TR-87-16 - 33 - May 27, 1987

17.

18.

19.

20.

21.

22.

23.

24.

25.

Smith, Alvy Ray, “Spline Tutorial Notes,” in Tutorial Notes: Computer
Animation, SIGGRAPH(1984).
Teitelman, Warren, “The Cedar Programming Environment: A Midterm
Report and Examination,” CSL-83-11, Xerox PARC (June 1984).

Teitelman, Warren, “A Tour Through Cedar,” IEEE Software l (2) pp.
44-73 (April 1984).
Thomas, Frank and Johnston, Ollie, Disney Animation: The Illusion of
Life, Abbeville Press, New York (1981).
VanBaerle, Susan and Kingsbury, Doug, Snoot and Muttly, Ohio State
University CGRG (1984). Animation.
Wedge, Chris, Tuber’s Two Step, Ohio State University CGRG (1985).
Animation.
Wilhelms, Jane, “Towards Automatic Motion Control,” in Tutorial
Notes: Computer Animation: 3- D Motion Specification and Control, 1986
Zeltzer, David, Gomez, Julian, and MacDougal, Paul, “A Tool Set for
3-D Computer Animation,” in Tutorial Notes: Introduction to Computer
Animation, SIGGRAPH(1984).
Zeltzer, David, “Toward An Integrated View of 3-D Computer Anima-
tion,” in Tutorial Notes: Introduction to Computer Animation, SIG-
GRAPH(1984).

